18 resultados para Aquatic environment

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Awareness of antibiotics in wastewaters and aquatic ecosystems is growing as investigations into alternate pollutants increase and analytical techniques for detecting these chemicals improve. The presence of three antibiotics (ciproffoxacin, norfloxacin and cephalexin) was evaluated in both sewage effluent and environmental waters downstream from a sewage discharge. Bacteria cultured from the sewage bioreactor and receiving waters were tested for resistance against six antibiotics (ciprofloxacin, tetracycline, ampicillin, trimethoprim, erythromycin and trimethoprim/sulphamethoxazole) and effects of short term exposure (24h) to antibiotics on bacterial denitrification rates were examined. Antibiotics were detected entering the sewage treatment plant with varying levels of removal during the treatment process. Antibiotics were also detected in effluent entering receiving waters and detectable 500m from the source. Among the bacteria cultured from the sewage bioreactor, resistance was displayed against all six antibiotics tested and bacteria cultured from receiving waters were resistant against two of the antibiotics tested. Rates of denitrification were observed to decrease in response to some antibiotics and not to others, though this was only observed at concentrations exceeding those likely to be found in the environment. Findings from this preliminary research have indicated that antibiotics are entering our aquatic systems and pose a potential threat to ecosystem function and potentially human health. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mounting concerns regarding the environmental impact of herbicides has meant a growing requirement for accurate, timely information regarding herbicide residue contamination of, in particular, aquatic systems. Conventional methods of detection remain limited in terms of practicality due to high costs of operation and the specialised information that analysis provides. A new phytotoxicity bioassay was trialled for the detection of herbicide residues in filter-purified (Milli-Q) as well as natural waters. The performance of the system, which combines solid-phase extraction (SPE) with the ToxY-PAM dual-channel yield analyser (Heinz Walz GmbH), was tested alongside the traditional method of liquid chromatography-mass spectrometry (LC-MS). The assay methodology was found to be highly sensitive (LOD 0.1 ng L-1 diuron) with good reproducibility. The study showed that the assay protocol is time effective and can be employed for the aquatic screening of herbicide residues in purified as well as natural waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of air-breathing organs (ABOs) is associated not only with hypoxic environments but also with activity. This investigation examines the effects of hypoxia and exercise on the partitioning of aquatic and aerial oxygen uptake in the Pacific tarpon. The two-species cosmopolitan genus Megalops is unique among teleosts in using swim bladder ABOs in the pelagic marine environment. Small fish ( 58 - 620 g) were swum at two sustainable speeds in a circulating flume respirometer in which dissolved oxygen was controlled. For fish swimming at 0.11 m s(-1) in normoxia (Po-2 = 21 kPa), there was practically no air breathing, and gill oxygen uptake was 1.53 mL kg(-0.67) min(-1). Air breathing occurred at 0.5 breaths min(-1) in hypoxia ( 8 kPa) at this speed, when the gills and ABOs accounted for 0.71 and 0.57 mL kg(-0.67) min(-1), respectively. At 0.22 m s(-1) in normoxia, breathing occurred at 0.1 breaths min(-1), and gill and ABO oxygen uptake were 2.08 and 0.08 mL kg(-0.67) min(-1), respectively. In hypoxia and 0.22 m s(-1), breathing increased to 0.6 breaths min(-1), and gill and ABO oxygen uptake were 1.39 and 1.28 mL kg(-0.67) min(-1), respectively. Aquatic hypoxia was therefore the primary stimulus for air breathing under the limited conditions of this study, but exercise augmented oxygen uptake by the ABOs, particularly in hypoxic water.